Dynamic Edge/Cloud Resource Allocation for
Distributed Computation under Semi-Static
Demands

Ippokratis Sartzetakis, Panagiotis Pantazopoulos, Konstantinos V. Katsaros, Vasilis Sourlas, Emmanouel
Varvarigos

Abstract—Edge computing is a recent paradigm where the
processing takes place close to the data sources. It therefore
reduces latency and saves bandwidth compared to traditional
cloud computing. The latter can continue to play a support-
ive role. Edge-cloud computing provides benefits in many use
cases including distributed computation algorithms, where the
processing is divided into a number of tasks that are executed in
parallel on different equipment. An important relevant challenge
is to allocate the appropriate resources to process the data that
are continuously generated from user devices. The issue becomes
more complicated when we take into account the variations in
the volume of the generated data as a function of time. In this
paper we present a resource allocation algorithm for distributed
computation with emphasis on machine learning algorithms. We
consider that the resource requirements vary with time in a
semi-static way that exhibits some daily pattern. We distinguish
between periodic (expected) variations that occur during the day,
and sporadic variations due to unexpected events. We propose an
Integer Linear Programming algorithm to allocate the periodic
resource requirements. To handle the non-periodic requirements,
we consider a suitable prediction algorithm coupled with a
reconfiguration algorithm that allocates the predicted required
resources. Our results indicate that our proposal outperforms
traditional allocation algorithms in terms of resource utilization,
monetary cost and achieved accuracy.

Index Terms—cloud and edge computing, distributed comput-
ing, distributed machine learning, resource allocation, prediction,
dynamic.

I. INTRODUCTION/MOTIVATION

He applications and services that process data generated

at Internet of Things (IoT) devices and mobile phones
continuously evolve. The resulting job processing require-
ments places significant burden on the edge and cloud resource
management. As a result, significant research effort has been
exerted to develop algorithms to select the resources that serve
the processing and storage demands [1] [2].

Another factor that complicates the management challenge
is the dynamicity and periodicity of the requirements. Internet
traffic volume in general, and the human generated data in
particular, follow a periodic pattern of daily fluctuations due
to the respective human activities patterns. Thus, the resource

This work was supported by the Horizon 2020 5G-IANA (101016427) and
SERRANO project (101017168). Ippokratis Sartzetakis and Emmanouel Var-
varigos are with the School of Electrical and Computer Engineering, National
Technical University of Athens, Greece (isartz, vmanos @mail.ntua.gr). Ip-
pokratis Sartzetakis, Emmanouel Varvarigos, Panagiotis Pantazopoulos, Kon-
stantinos V. Katsaros, Vasilis Sourlas are with the Institute of Communication
and Computer Systems, Greece (ppantaz, k.katsaros, v.sourlas@iccs.gr).

requirements of the resulting generated jobs are not constant
but exhibit a semi-static structure. Moreover, there are certain
events (e.g., football matches) that affect the volume of data
generated and processed. These events are to a certain extent
predictable. To this end, a number of previous works have
focused on resource demand prediction and resource allocation
at the edge and cloud [3] [4] [5] [6]. It is an interesting
topic that combines the resource allocation challenge with the
requirement of accurate prediction using artificial intelligence
among others.

A significant sub-category of work addressing the offloading
challenge is related to the problem of resource allocation for
distributed computation algorithms over a continuous time
horizon. In this case, a number of devices at the edge continu-
ously produce (large amounts of) data that are offloaded at the
edge and cloud resources. The processing of the algorithm is
divided into a number of tasks that are executed distributedly
on different equipment. In our previous work [7] we specifi-
cally studied resource allocation algorithms to solve the afore-
mentioned challenge. In this paper we extend our previous
work by considering the dynamicity and partial periodicity of
the resource requirements. More specifically, we assume that
the resource requirements are to a certain amount periodical
(known or estimated) during the day. For example, consider a
distributed ML training scenario in an Internet of Vehicles
setting. The daily vehicle traffic volume is periodical in a
large extent. We adopt a semi-static model, where the day is
divided in a number of sub-periods during which the resource
assignments are close to constant, except for some random
fluctuations. We plan in advance the assignment of resources
to the demands exhibiting a periodic pattern. Additionally, we
consider that certain events during the day significantly alter
the planned periodic allocations. For example, a major event
that results in mass people gatherings, typically disrupts among
others the vehicle traffic volume. We consider that these events
are estimated with some accuracy using a suitable prediction
algorithm as we will discuss in the following sections. We
present a suitable algorithm that takes as input the predicted
requirements, and adjusts the current resource allocation to
accommodate the altered demands.

To the best of our knowledge the combination of a planning
and a prediction algorithm for the allocation of network
resources has not been considered before at least in the specific
context of distributed computation algorithms. We present
interesting insights on the interplay of various parameters, such

as the trade-off between accuracy and monetary cost under
the aforementioned scenario. We compare our approach to
the alternative protocol of incremental updates in the resource
assignment to meet the current demands.

II. RELATED WORK

This work is generally related to the topic of computation
offloading. More specifically it is related to the topic of
resource allocation for distributed computation with prediction
of the resource requirements. Computation offloading and
Mobile Edge Computing [1] [2] is a vast research area. The
challenge is to decide about the locations where a given
set of tasks will be executed and to allocate the related
resources. In some cases, the execution of a task can be
divided and be partially offloaded. A special subcategory of
computation offloading is distributed computation [8], where
the jobs comprising a certain task are executed in parallel
and in many distributed locations. A major application of
distributed computation is distributed machine learning (DML)
[9] [10]. There are different variations/architectures of DML,
such as the parameter server(s) (where certain servers are
used to average the model’s weights and send the updated
values to the computing nodes) and all-reduce where the
coordination is distributed. A number of works have focused
on the allocation of resources for DML. In our previous work
[7], we developed resource allocation algorithms and examined
interactions between accuracy, monetary cost and delay. Other
approaches include the (computation and storage) resource
allocation to maximize the distributed learning throughput [11]
and the development of scheduling algorithms to minimize the
completion time [12]. The aforementioned research generally
does not consider the dynamic (periodic and non-periodic)
nature of the tasks. A number of works have considered pre-
dicting the demands to more efficiently allocate the appropriate
resources [3] [4] [5] [6] in the context of computation offload-
ing. Typically, an (artificial intelligence) algorithm is used to
estimate the resources in a given future time interval. Then a
related algorithm allocates the resources for that interval based
on the received input. In a similar direction, in this work we
significantly expand our previous work [7] in the context of
distributed computation. We consider both periodic and non-
periodic variations of the data volume generated by the user
devices that feed the distributed algorithm. We employ a traffic
predictor to estimate the unexpected changes in requirements.
We then demonstrate the advantages of our approach over
other approaches.

III. PROBLEM STATEMENT

We consider a number of devices at the edge that con-
tinuously produce data. The data processing is performed
at the edge network close to the devices, and at a more
distant cloud. The edge network includes a set of nodes
N with finite capacity that can be used by the ML tasks.
The cloud network has infinite resources. A set of devices
make for an algorithmic job j that processes their data. The
processing of job j is divided into a set of distributed ML
tasks T; = {tj1,%;2,...,tje} that are executed in parallel at

respective worker nodes. There is a time window I' in which
the devices generate and send the data for processing, and a
subsequent time window where the data are processed. Each
ML task needs certain computation and network and possibly
aggregation (in the case of parameter servers) resources during
each time window. We assume that the vector of resource
requirements remains constant throughout certain periods dur-
ing a 24h daily cycle due to known periodic variations. For
example, we can assume that there are three 8-hour periods
during which the requirements remain constant.

%
o))»)

o;)») I

1 le

Fig. 1. The abstract architecture considered.

We denote: RPIe = [GPica Brica @pPica] where G, B,
and © are parameters that reflect the amount of processing
(in, e.g., Floating Point Operations - FLOP), number of bits
communicated to the nodes and processing for weight aggre-
gating purposes that each sample requires for the specific time
period p, the ML task e of job (application) j and for a specific
required computation accuracy a. Computation accuracy is a
parameter that can be traded-off against resource requirements,
when the resources are limited.

Additionally, we consider that during the day we can have
temporary fluctuations in the resource requirements. These
fluctuations could be due to major events that disrupt the
normal city traffic or that attract too many people to a certain
location. We denote with RE’* the brief increase of the
resource requirements that has to be met, where the indices p,
e, 7 and a are as defined above.

To allocate the appropriate resources for the aforementioned
scenarios, we employ three main algorithms:

e An Integer Linear Programming (ILP) planning algo-
rithm. This algorithm is responsible for the resource
allocation of the periodic requirements RP7¢°,

o A traffic predictor that estimates temporary increases
RY’*® in resource requirements.

o A reconfiguration algorithm that reconfigures the resource
allocation according to the predictor’s output.

IV. RESOURCE ALLOCATION ALGORITHMS
A. ILP Algorithm

In this subsection we present the ILP algorithm. The goal of
this resource allocation algorithm is to reserve the appropriate
resources for the tasks, including the specific edge node where
each task will be processed), while minimizing certain objec-
tives and satisfying all the constraints. A special parameter

TABLE I
NOTATION
Symbol Description
J Set of jobs
T} Set of tasks of job j
Aje Production rate of task je in samples/sec j
N Set of node of edge network

Set of processing, b/w, aggregation resources
of edge node n
Processing and b/w costs at the edge
and cloud respectively

RS, RE, RY

cf. ot . C. ot

Oc Propagation delay of cloud

Aj Acceptable prop. delay of job j

w Weight to control optimization objective

A Set of possible accuracies of ML jobs

aj An accuracy of a job j ranging from O to 1
amrm The minimum acceptable accuracy of a job j

ILP binary variable equal to 1

ghiea if task je is served at node n
at period p with accuracy a

ILP binary variable equal to 1

ghiea if task je is served at the cloud

at period p with accuracy a
k The total monetary cost to serve all jobs
A set of jobs that must not migrate locations
from one period to another
PC A set of all possible combinations of
successive periods p, p’
je The migration cost of each task je from a
PP period p to a period p’

(migration cost) is used to control whether or not tasks can
change execution location from one period to another. To avoid
the related transferring (migration) overhead, tasks should be
executed at a fixed place.

Inputs:

N7 Rg7 RE» Rga Ja iTj? Cg7 C%‘w7 ng nga 567 A]a Wa
A AN

Variables:

grica grica i a,m’e,

The symbolism in binary variable ££7°9* means that there
is a different variable for every different time period p, node
n, job j, task e, and for every different accuracy level . The
symbol k represents the total monetary cost to serve all jobs. It
is aimed to be minimized at the objective. Symbol a represents
the mean accuracy of all the tasks to be served. It is aimed to
be maximized at the objective.

Objective:

We have a multi-criterion optimization problem, as the
objective is to minimize the total cost to serve the jobs,
minimize the migration cost (tasks moving from one location
to another) and maximize the accuracy.

The relative importance of each individual objective (that
transforms each objective in a monetary cost, for example) is
controlled by three respective weights wy, ws, wg with wy +
wg + w3 = 1. The cost of each job depends on the amount
of processing and b/w and whether it is served at the edge or
the cloud:

min (wlk—wga—kngmi;,) (1)

Subject to:

e The cost to serve all jobs consists of the sum of the
edge and cloud bandwidth (b/w) plus the edge and cloud
processing cost for all the task jobs, for all the accuracy
options and for all the periods:

k= Z Z Z Z(Z grica), (Chw grice 4
J P

tjie a n
CEGPI) 4 €PN (CE B + CEGP™)) (2)

o The mean accuracy of all tasks is defined as:

a=3 2o M) ()

Jj tje m
o Each task of a job should be served once with one

accuracy option, at the edge or at the cloud
V3, Vt;eVp

S S e+ Y =1 @

neN a a
o Edge capacity constraints:

VneN:» S NN gpeagrican, < RS (5)
J tje a p

VneN:Y Y N N gpieaprice);, <RE(6)
Jj tje a p

VneN:Y N NN gpicagricay;, <RY(7)
J lie a p

e Cloud delay constraints for relevant jobs:

Vi, Vtje, Vp 1 E279%5; < A, (8

¢ The minimum required accuracy should be respected:
Vj,Vtje, VD :

Z Z Eﬁjeaaj + Z ggjeaaj > a;mln 9)
neN a a
o Migration cost: the cost when a task moves from one
location to the other. Variable mcjep, increases in value
if a job stays in the same place in subsequent periods.

Vi, Ve & S,¥a,¥p,p' € PC:mlS, >= ghica _ ¢p'iea
(10)

V), Vtje & S,Va,Vp,p' € PC':mlS, >= gres — grica
(1)
The solution of the algorithm is the binary values of all the
variables. For example, when p=1,n=1,7=1,e=1,q =
1,a = 1, and £P7¢ = 1 then the first task of the first job is
served at the first node of the edge network using the first GPU
model, and the first choice of the available accuracy options.
Even though the ILP algorithms are generally computationally
intensive, the specific formulation can provide promptly a
solution in realistic scenarios as we will demonstrate in the
simulation section. Moreover, certain heuristic algorithms as
shown in our previous work [7] can be used to accelerate the
execution time.

B. Traffic prediction algorithm

The traffic predictor takes as input some previously ob-
served data of either the sample production rate \;. or the
required resources per task RP7®*. Without having to be
specific, as we are not interested in the details of the specific
algorithm used, we assume that we employ some ML or
other algorithm to predict the required resources, providing
as output the predicted vector of required resources during
future time steps \;e RE1“Y, ;e RES“. The goal of a predictor
is to find and fit a function to the available past data in order
to estimate future data. An essential part of the problem is
to select (mainly through trial and error) the suitable time
estimation period (or equivalent) amount of data required
to have accurate enough predictions. In our case we are
interested in very short term prediction. The input could be
three or four time steps, with one time step corresponding
to 15 minutes, and the output could be given for two or
three time steps. There is a large number of previous works
related to this subject ranging from autoregression algorithms
to specific ML and neural network architectures [13] [14]
[15]. Autoregression uses a regression model that combines
a number of historical values to estimate future values. One
suitable model could be (weighted) linear regression. SVMs
as well as neural networks (e.g. Long short-term memory or
convolutional neural networks) have the ability to fit more
complex functions to the data. An example architecture in the
case of a predictor based on Convolutional Neural networks
consists of a convolutional hidden layer and a pooling layer.
Then a flatten layer is used to feed the subsequent dense
fully connected layer that provides the output. In our case any
algorithm that provides an accurate output for a small number
of future time steps can be used to estimate the resource
requirements. The prediction is given to the heuristic algorithm
responsible for the reconfiguration of the network.

C. Heuristic resource allocation algorithm

The heuristic reconfiguration algorithm takes as input the
estimated resource requirements for each task, and examines
one task at a time. If the estimated demands cannot be
served by the allocated resources, then the algorithm considers
reconfiguring the appropriate resources. The algorithm first
checks whether there are adequate free resources at the original
location of each task that can satisfy the new requirements. If
there are, then it allocates the appropriate resources. If not,
there are two options: either move the entire task to a new
location that can satisfy the requirements, or keep unchanged
the previous configuration. All the decisions depend on the
respective acceptable reconfiguration cost and the Service
Level Agreement (SLA) constraints. More specifically, the
reconfiguration cost can be defined as the number or the
percentage increase of the processing resources, the additional
monetary cost and the location of the possible reconfigurated
task. Regarding the SLA, certain tasks could require they
should not change location so that their execution will not
be interrupted. In other cases the most appropriate decision
could be to always match their requested resources.

After the requirements have returned to their normal planned
values, the algorithm releases the additional resources. If the
task has changed location, the algorithm preserves the new
location (unless there is another policy) so that future increases
can be easily accommodated.

V. SIMULATIONS

In this section we present the results of a number of
simulation experiments. We assumed a 10-node edge network
with finite resources. Each edge node has 5 racks, 1 rack has
10 servers, and 1 server has 4 low cost and 2 higher cost GPUs,
for a total of 200 low cost and 100 higher cost GPUs per node.
Each edge node has 10 Tbps incoming bandwidth and 6000
CPU physical cores (that could correspond to approximately
100 CPUs). We also assumed a cloud network with infinite
resources. Without loss of generality, we considered a scenario
A consisting of a total of 400 training image recognition ML
jobs and a scenario B consisting of 600 jobs. The size B;
of each data sample (i.e., image in these experiments) of a
job 7 is chosen uniformly from the following set of values:
[0.4, 0.8, 1.2, 1.6, 2, 2.4] MBs / sample. The available GPU
models ¢ were NVIDIA DGX-1 with 1 (low cost) or 8 (higher
cost) GPU V100 16G. The respective cost of these GPUs at
the cloud is $2.08/hour and $16.7/hour [16] (p3.2xlarge or
p3.16xlarge). The b/w cost to transfer data to the cloud is
0.01/GB [16]. The required b/w of each task ¢;. is derived by
multiplying the generation rate [;. of samples/sec by the size
B; in MBs/sample and by the duration of the time window
I" in seconds. This figure equals to the amount of data that
have to be transferred within one period. Similarly to our
previous work [7], we considered that the edge’s b/w costs
are approximately 0.1 times those of the cloud’s (as the data
has to be transferred over shorter distances), and the edge
processing costs are 1.5 times the cloud processing costs (as
edge resources are more costly to host and operate). Each
of the 100 training jobs consists of either 3, 4,..., 7 ML
image recognition tasks, uniformly distributed. The sum of
the sample production rates of the devices providing data to
task Z;. is 15 samples/sec. We consider that the duration of
the training period is I' = 30 seconds, yielding S;. = 450
total samples processed in each period. We also assume that
each ML task could be served with two different accuracies
A = q9°0?_glow The number of NVIDIA GPU units UP7€9¢
required per period, per task and per time window I, is
calculated as in [7] based on the number of samples S, of
each task t;, processed per time window and the accuracy
aj. The computational performance Piy of 1 GPU V100
16G unit for image recognition training according to [17] is
Pig = 166 or 566 samples/sec for single-precision floating-
point math — FP32 or mixed precision accuracy respectively.
The performance of a resource type ¢ consisting of 8 GPU
V100 units is Pig = 1210 or 4160 samples/sec, respectively.
We assumed 100 number of epochs. Similar results can be
drawn for different epochs and processing costs as explained
in [7]. We consider 3 periods within a day for which we
will use the ILP to plan the allocation of resources. Based on
[19], we assume that traffic volume ratios for the respective

periods correspond to: 0.25, 1, 0.5. So, the second period
volume is four times bigger than the first period, and the
third period volume is twice than that of the first period. We
assume that these ratios translate to respective ratios for the
number of ML tasks. The simulations were executed in Python
in a quad-core CPU. The running time of the algorithm for
these parameters was approximately 2 seconds. Regarding the

100
W=0.39
95 o

90

85

=== proposed

Mean Accuracy of all tasks

80 ==e==one-period only

=== incremental

Costin $

Fig. 2. Accuracy vs monetary cost comparison (Scenario A)

unexpected fluctuations, we assume certain events can increase
the normal traffic of the second period by 20% percent which
is a realistic estimate [19]. We assumed that a traffic predictor
as in [15] is used to estimate the differences. We compare to
an alternative algorithm, where there is no planning to serve
the demands over the three periods (named “incremental”) and
to predict the unexpected fluctuations. Instead, this algorithm
serves (greedily) each demand one-by-one at the edge or
the cloud by trying to minimize its individual cost objective.
Whenever there is an increase at the demands, the algorithm
serves one-by-one the related demands. Another alternative
(named “one-period”) assumes one planning period where
the requirements of the most demanding period are planned
in advance (as in [7]). The rest of the requirements are
again served one-by-one by the aforementioned incremental
algorithm.

In Figs. 2 and 3 we compare the accuracy vs monetary
cost of our proposal compared to the alternatives for scenarios
A and B, respectively. For simplicity we assumed only one
weight W, for the monetary cost optimization, while the
accuracy weight equals to 1 — W and there is no migration.
For this set of values, we plot the resulting mean accuracy
of all the jobs and their total monetary cost. The choice
of the exact values of W depends on the parameters of
the problem. For larger or smaller instances, different set of
values may be required to acquire the respective accuracy to
monetary cost relationship. For example, for smaller amount
of jobs the total monetary cost could be smaller. Therefore,
a larger value of W may be necessary to have the same
accuracy. Generally, using this figure, the trade-off between
accuracy and monetary cost can be deduced for a given set
of parameters and set of jobs. We observe that the proposed
algorithm achieves the best accuracy coupled with the lowest

100

W=0.39
95

wn
-
w
]
= 90
Gt
o
>
9
<
= 85
3
< ==o==proposed
é 80 === one-period only
W=0.15 incremental
75
1 2 3 4 5 6 7 8
Costin $

Fig. 3. Accuracy vs monetary cost comparison (Scenario B)

monetary cost in both scenarios. For 80% accuracy, the related
costs in scenario A are $2, $2.27 and $2.6 for the proposed,
one-period and traditional algorithm respectively. So, the ILP
algorithm can serve the tasks with the same accuracy, but
at 9.5% and 21.7% lower cost respectively. Moreover, for
roughly the same cost ($2.75) the proposed algorithm achieves
87.5% mean accuracy, compared to the 84.9% and 82.7%
of the other algorithms. The reason that the algorithms that
employ (even one period) planning perform better, is that they
have a complete view of all the demands at the beginning
of the allocation. Therefore, they can make optimized placing
decisions by taking into account the best overall objective cost.
In contrast, the heuristic algorithms that serve one by one the
tasks take into account the individual objective cost of each
task, which could lead to sub-optimal total objective cost. The
proposed algorithm uses planning for all three periods, so it
has the best performance among the examined algorithms. In
the case of the best accuracies, the difference in monetary
costs are less prominent (1.8% and 4.36% lower cost than
the one-period and the incremental algorithms, respectively).
The reason for this is that the best accuracy requires the most
expensive allocation decisions. This leaves little room for cost
improvements by the placement optimization of the jobs. In
scenario B, the savings of our proposal are somewhat larger,
by approximately 2%. The reason is that the additional number
of jobs create more allocation possibilities, and more oppor-
tunities for the planning and the subsequent reconfiguration
algorithm to better allocate the resources. In conclusion, the
proposed algorithm provides benefits under a variety of loads.

In Figs. 4 and 5, we assumed a common target accuracy of
80% for all the compared algorithms. The objective is to serve
the jobs at the lowest possible monetary cost. We examine the
GPU utilization of the three algorithms. We notice that the
proposed algorithm in scenario A requires 12.6% and 6.4%
less GPU units to achieve the same results as the traditional
incremental and the one-period algorithms respectively. Again,
in scenario B the savings are slightly higher for the same
aforementioned reasons. These results also translate to less
required energy of the resources to produce the same output.
This parameter has not been taken into account in this research

at this time. An energy model as the one in [20] can be used to
acquire the respective results and can be the topic of a future
work.

1250

1200

1150

1100
1050
1000 l
950

proposed

Number of GPU units

one-period only incremental

Fig. 4. GPU unit utilization comparison (Scenario A)

VI. CONCLUSIONS

In this work we investigated the problem of allocating
resources for distributed computation applications in the con-
text of periodic and non-periodic demands. We presented a
planning algorithm that serves the periodic demands, i.e.,
demands that are semi-static, in sense of being constant over a
number of fixed intervals. We also proposed a framework that
consists of a traffic predictor and a respective reconfiguration
algorithm that serves the unexpected (non-periodic) demands.
We performed a number of simulation experiments. The results
show that our proposal has a number of advantages when
compared to the examined alternatives, of either using a recon-
figuration algorithm to serve one by one each demand (both
periodic and non-periodic) request, or a scheme that consists
of only one period for planning and then a reconfiguration
algorithm to serve one-by-one the fluctuations. More specifi-
cally, our proposal can achieve approximately 20% reduction
is monetary costs over a traditional allocation algorithm and
10% reduction over a planning algorithm that does not account
for the periodic and the non-periodic fluctuations. Future work
includes the addition of other parameters such as energy
consumption.

REFERENCES

[1] P. Mach, Z. Becvar,“Mobile edge computing: A survey on architecture and
computation offloading,” IEEE Communications Surveys and Tutorials,
19(3), 1628-1656, 2017.

[2] F. Saeik, M. Avgeris, D. Spatharakis, N. Santi, D. Dechouniotis, J. Violos,
A. Leivadeas, N. Athanasopoulos, N. Mitton, S. Papavassiliou, “Task
offloading in Edge and Cloud Computing: A survey on mathematical,
artificial intelligence and control theory solutions,” Computer Networks,
195, 2021.

[3] W. C. Chien, C. F. Lai, H. C. Chao, "Dynamic resource prediction and
allocation in C-RAN with edge artificial intelligence,” IEEE Transactions
on Industrial Informatics, 15(7), 4306-4314, 2019.

[4] B. Bao, H. Yang, Q. Yao, L. Guan, J. Zhang, M. Cheriet, “"Resource
allocation with edge-cloud collaborative traffic prediction in integrated
radio and optical networks,” IEEE Access, 11, 7067-7077, 2023.

[5] X. Chen, F. Zhu, Z. Chen, G. Min, X. Zheng, C. Rong, “Resource
allocation for cloud-based software services using prediction-enabled
feedback control with reinforcement learning,” IEEE Transactions on
Cloud Computing, 10(2), 1117-1129, 2020.

[6] M. Chen, Y. Miao, H. Gharavi, L. Hu, I. Humar, “Intelligent traffic
adaptive resource allocation for edge computing-based 5G networks,”
IEEE transactions on cognitive communications and networking, 6(2),
499-508, 2019.

[7] 1. Sartzetakis, P. Soumplis, P. Pantazopoulos, K. V. Katsaros, V. Sourlas,
E. Varvarigos, “Edge/Cloud Infinite-time Horizon Resource Allocation for
Distributed Machine Learning and General Tasks,” IEEE Transactions on
Network and Service Management, 2023.

[8] D. Bertsekas, J. Tsitsiklis, “Parallel and distributed computation: numer-
ical methods,” Athena Scientific, 2015.

2000
1800
1600
1400
1200
1000

800

Number of GPU units

600
400

200

proposed one-period only incremental

Fig. 5. GPU unit utilization comparison (Scenario B)

[9] J. Dean, G. S. Corrado, R. Monga, K. Chen, M. Devin, Q. V. Le, M.
Z. Mao, M.A. Ranzato, A. Senior, P. Tucker, K. Yang, A. Y. Ng, “Large
scale distributed deep networks,” NIPS, pp. 12231231, 2012.

[10] T. Ben-Nun, T. Hoefler, “Demystifying Parallel and Distributed Deep
Learning: An In-depth Concurrency Analysis,” ACM Comput. Surv. 52,
4, Article 65, 2019.

[11] M. Chen, H. Wang, Z. Meng, H. Xu, Y. Xu, J. Liu, H. Huang, “Joint Data
Collection and Resource Allocation for Distributed Machine Learning at
the Edge,” IEEE Transactions on Mobile Computing 2020.

[12] R. Zhou, J. Pang, Q. Zhang, C. Wu, L. Jiao, Y. Zhong, Z. Li,
“Online Scheduling Algorithm for Heterogeneous Distributed Ma-
chine Learning Jobs,” IEEE Transactions on Cloud Computing, doi:
10.1109/TCC.2022.3143153.

[13] A. S. Weigend, “Time series prediction: forecasting the future and
understanding the past,” Routledge, 2018.

[14] N.I. Sapankevych, S. Ravi, "Time series prediction using support vector
machines: a survey,” IEEE computational intelligence magazine 4.2, 24-
38, 2009.

[15] Y. Hua, Z. Zhao, R. Li, X. Chen, Z. Liu, H. Zhang, "Deep learning with
long short-term memory for time series prediction,” IEEE Communica-
tions Magazine, 57(6), 114-119, 2019.

[16] “Amazon ec2 pricing,” available online:
https://aws.amazon.com/ec2/instance-types/p3/

[17] “Nvidia resnext performance,” available online:
https://ngc.nvidia.com/catalog/resources/nvidia:resnext_for_tensorflow/

performance

[18] P. Mattson, C. Cheng, C. Coleman, G. Diamos, P. Micikevicius, D.
Patterson, H. Tang, G.-Y. Wei, P. Bailis, V. Bittorf, D. Brooks, D. Chen,
D. Dutta, U. Gupta, K. Hazelwood, A. Hock, X. Huang, A. Ike, B. Jia, D.
Kang, D. Kanter, N. Kumar, J. Liao, G. Ma, D. Narayanan, T. Oguntebi,
G. Pekhimenko, L. Pentecost, V. J. Reddi, T. Robie, T. S. John, T. Tabaru,
C.-J. Wu, L. Xu, M. Yamazaki, C. Young, M. Zaharia, “MLPerf Training
Benchmark,” ArXiv abs/1910.01500 (2020).

[19] S. Batterman, R. Cook, T. Justin, "Temporal variation of traffic on
highways and the development of accurate temporal allocation factors for
air pollution analyses,” Atmospheric environment 107, 351-363, 2015.

[20] G. Drainakis, P. Pantazopoulos, K. V. Katsaros, V. Sourlas, A. Amditis,
“On the Distribution of ML Workloads to the Network Edge and Beyond”,
IEEE INFOCOM 2021.

